|
0 1 2 3 4

Quick Sort

10 16 8 12 15

8&03‘

Pivot=10 i

partition (I, h)

{
pivot = A[l];
i=1; j=h;
while(i<j)
{
do
{
[++;
} while (A[i] <pivot);
do
{
==
} while (A[j]>pivot);
if (i<j)
Swap (A[i], A[j]);
}
Swap (A[l], A[j]);
Return j;
}

Quicksort(l,h)
{
If (I<h)
{
J=partition(l,h);
Quicksort(l,j);
Quicksort(j+1,h);

[S—

Performance of Quick Sort

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine pro-
duces one subproblem with n — 1 elements and one with 0 elements.

Let us assume that this unbalanced partitioning arises
in each recursive call. The partitioning costs ®(n) time. Since the recursive call
on an array of size 0 just returns, 7'(0) = ©(1), and the recurrence for the running
time 1S

T(n) = Tm—-1)+T0O)+ O()
= Th—-1)+0@).

Intuitively, if we sum the costs incurred at each level of the recursion, we get
an arithmetic series which evaluates to ®(n?). Indeed, it is
straightforward to use the substitution method to prove that the recurrence 7'(n) =
T'(n — 1) + ®(n) has the solution 7'(n) = O(n?).

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is ®(n?). Therefore the worst-case running time of
quicksort is no better than that of insertion sort. Moreover, the ®(n?) running time
occurs when the input array is already completely sorted—a common situation in
which insertion sort runs in O(n) time.

Best-case partitioning

In the most even possible split, PARTITION produces two subproblems, each of
size no more than n/2, since one is of size |n /2| and one of size [n/2] — 1. In this
case, quicksort runs much faster. The recurrence for the running time is then

T(n)=2Tn/2) +0OM0m),

where we tolerate the sloppiness from ignoring the floor and ceiling and from sub-
tracting 1. By case 2 of the master theorem this recurrence has the

solution 7'(n) = O(nlgn). By equally balancing the two sides of the partition at
every level of the recursion, we get an asymptotically faster algorithm.

Balanced partitioning

The average-case running time of quicksort is much closer to the best case than to
the worst case, The key to understand-

n B T T T LT LT P L PP PP EP L TR TIPS T cn

A A / \
”1'1‘6’1 l%l’l ------------------------------------- - cn
logo 7 1/ \9 9 / \81
Too /7 Too /? Too T00 1B sy - cn
VAN /N N\
0g 10791 / \ I \ s 729
Y 1 1000 7 1000 7& | fessssasgang i cn
AT T8
---------- - < cn
A\
Y | QT m <cn
O(nlgn)

A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O(n lgn). Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant ¢ implicit in the ®(n) term.

ing why is to understand how the balance of the partitioning is reflected in the
recurrence that describes the running time. .

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced. We then obtain the
recurrence

T(n) =T0On/10) + T(n/10) 4+ cn ,

on the running time of quicksort, where we have explicitly included the constant ¢
hidden in the ®(n) term. Figure shows the recursion tree for this recurrence.
Notice that every level of the tree has cost cn, until the recursion reaches a bound-
ary condition at depth log,,n = ®(lgn), and then the levels have cost at most cn.
The recursion terminates at depth log,,,on = ®(lgn). The total cost of quick-
sort is therefore O(nlgn). Thus, with a 9-to-1 proportional split at every level of
recursion, which intuitively seems quite unbalanced, quicksort runs in O(nlgn)
time —asymptotically the same as if the split were right down the middle. Indeed,
even a 99-to-1 split yields an O(n 1g n) running time. In fact, any split of constant
proportionality yields a recursion tree of depth ®(lg), where the cost at each level
is O(n). The running time is therefore O(n lgn) whenever the split has constant
proportionality.

/ \ -—) O(n) /n\———) 0(n)
/ \ ; Rnes (n-l)/Z

(-D2-1 (-D2
(a) (b)

Figure (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a “bad” split: two subarrays of sizes 0 and n — 1. The partitioning of the subarray of
size n — 1 costs n — 1 and produces a “good” split: subarrays of size (n — 1)/2 — 1 and (n — 1)/2.
(b) A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for
the subproblems shown with elliptical shading is ® (). Yet the subproblems remaining to be solved
in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be
solved in (b).

